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Recently developed low-rank tensor decompositions offer new tools for high dimensional uncertainty quantification. Such approaches
do not inherently suffer from the so-called “curse of dimensionality”, because their convergence rates depend only linearly on the
number of parameters. Therefore they have a theoretical advantage over current state-of-the-art methods, e.g. stochastic collocation
on sparse grids. In this work, we offer an overview on low-rank tensor decompositions, justify their use for uncertainty quantification
purposes and present a relevant numerical example from electromagnetics.
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I. INTRODUCTION

Uncertainty quantification (UQ) for electromagnetic field
applications is primarily based either on sampling or spectral
methods. Sampling methods converge slowly but their conver-
gence rates remain unaffected from the number of uncertain
parameters, resp. random variables (RVs). On the other hand,
spectral methods converge rapidly, but become intractable for
a large number of RVs. Combining spectral methods with low-
rank tensor decompositions [2] can result in linear dependen-
cies w.r.t. the number of RVs, while preserving the desired
convergence properties [8]. Therefore, tensor decompositions
seem attractive for high dimensional UQ problems.

In [3], the tensor train (TT) decomposition was applied to
an electrothermal field problem with 12 input RVs. It was
shown that the approximation error decreases with increasing
TT ranks, yielding accurate moments at a reasonable compu-
tational cost. In this work we investigate the efficiency of this
approach for a quantity of interest (QoI) of different regularity.
Moreover, in the full paper, results for a larger number of
input RVs will be given, in order to determine the break-even
between tensor decompositions and sparse grids, for specific
applications in electromagnetics.

II. TENSORS AND TENSOR DECOMPOSITIONS

We call an N -dimensional array of size In in the n-th
dimension a tensor A ∈ RI1×···×IN . The entries of A are
given by A (i1, ..., iN ), in = 1, ..., In. A tensor’s storage and
computational complexity is O

(
IN
)
, I = maxn In. This curse

of dimensionality can be circumvented with the use of low-rank
tensor decompositions. The canonical tensor rank [2] is defined
as the smallest integer R, such that

A =

R∑
r=1

u1
r ⊗ u2

r ⊗ · · · ⊗ uN
r , (1)

where ⊗ denotes the Kronecker product and un
r ∈ RIn .

Determining the canonical rank of a tensor is an NP-hard prob-
lem and while algorithms for its numerical computation exist,
they are not always robust. On the other hand, using tensor

matricizations An ∈ RIn×I1···In−1In+1···IN , the multi-linear or
Tucker rank (R1, ..., RN ), Rn = rank (An), can be robustly
computed with N singular value decompositions. Both rank
definitions yield specific tensor decomposition formats.

The canonical polyadic decomposition (CPD) yields a fixed-
R tensor approximation in the form of (1). Its complexity is
O (NIR), i.e. linear w.r.t. the number of dimensions. Greedy
algorithms for the construction of CPDs, e.g. the proper
generalized decomposition, have been found to work well for
some UQ problems [4]. However, this format suffers from the
same lack of robustness as the canonical-rank problem.

The Tucker decomposition, in element-wise notation, reads

A (i1, ..., iN ) ≈
∑

r1,...,rN

C (r1, ..., rN )

N∏
n=1

Un (in, rn) , (2)

with indices rn = 1, ..., Rn, core tensor C ∈ RR1×···×RN

and factor matrices Un ∈ RIn×Rn . The Tucker decomposition
is robust and offers major compressions for Rn � In, but
suffers from the curse of dimensionality, as its complexity is
O
(
RN +NIR

)
, R = maxn Rn.

The TT decomposition [5], also known as the matrix prod-
uct states (MPS) format, combines both robustness and low
complexity. In element-wise notation, it reads

A(i1, ..., iN ) ≈
∑

r0,...,rN

N∏
n=1

Gn (rn−1, in, rn) (3)

= Gi1
1 Gi2

2 · · ·GiN
N , (4)

with indices rn = 1, ..., Rn, R0 = RN = 1, and TT-
cores Gn ∈ RRn−1×In×Rn . In the equivalent MPS format
of (4), matrices Gin

n ∈ RRn−1×Rn are slices of the TT-
cores Gn for fixed in, such that Gin

n = Gn (:, in, :). The
TT format’s complexity is O

(
NIR2

)
, i.e. also linear w.r.t.

the number of dimensions. Moreover, there exist TT-based
cross approximation algorithms [6], [7] for function-related
tensors, i.e. A (i1, ..., iN ) = f

(
x
(i1)
1 , ..., x

(iN )
N

)
with x

(in)
n

being discrete values of variable xn. These algorithms yield
the TT decomposition without ever computing the full tensor,
resulting in computational complexities of O

(
NIR3

)
.
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Fig. 1. Relative errors vs maximum TT-rank of QTT.

III. TENSOR DECOMPOSITIONS FOR UQ

We want to estimate moments of a stochastic model’s QoIQ,
dependent on a set of independent RVs y = (y1, . . . , yN ), such
that Q = Q (y). Using the stochastic collocation (SC) method
[1], the mean value is computed with a numerical quadrature
scheme, such that

E[Q] ≈
∑

i1,...,iN

w
(i1)
1 · · ·w(iN )

N Q
(
y
(i1)
1 , ..., y

(iN )
N

)
, (5)

where y
(in)
n are univariate collocation points, resp. quadrature

abscissas, w(in)
n the corresponding weights and in = 1, ..., In.

The QoI is evaluated for each multivariate collocation point(
y
(i1)
1 , ..., y

(iN )
N

)
. The tensor product (TP) SC results in a

complexity of O
(
IN
)
. This complexity can be mitigated to

O
(
I (log I)

N−1
)

with the use of sparse grids (SG), however
the curse of dimensionality remains.

Eq. (5) can be written in the form of a tensor inner product

E [Q] ≈ 〈W ,Q〉 =
∑

i1,...,iN

W (i1, ..., iN )Q (i1, ..., iN ) , (6)

where W (i1, ..., iN ) = w
(i1)
1 · · ·w(iN )

1 and Q (i1, ..., iN ) =

Q
(
y
(i1)
1 , ..., y

(iN )
N

)
. Using univariate weight vectors wn =(

w
(1)
n , ..., w

(In)
n

)
, tensor W can be written as an exact rank-

1 CPD, i.e. WCPD = W . TT-cross approximation algorithms
[6], [7], can be used to compute a TT decomposition of tensor
Q, such that QTT ≈ Q. Due to their linear dependence w.r.t.
the number of RVs N and assuming that an accurate low-rank
TT approximation of Q is feasible, low-rank decompositions
shall outperform the SG-SC in high dimensions.

IV. NUMERICAL RESULTS AND CONCLUSIONS

We consider an electrothermal field problem with 12 input
RVs, as in [3]. As QoI we choose the `2-norm ‖T‖2 of
the discrete temperature vector T. Norm ‖T‖2 is a smooth
function w.r.t. the input RVs. We pick In = 5 univariate
collocation points per RV, thus rendering the TP-SC completely
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Fig. 2. Computational costs vs maximum TT-rank of QTT.

unaffordable, since 512 ≈ 2.5 · 108 model evaluations would
be required. SG-SC yields approximately 17 · 103 collocation
points, resp. weights, which is still a high computational cost.

We regard the mean and standard deviation obtained with the
SG-SC as reference values and apply the approach discussed
in Section III. Storage of tensor W requires only 12 · 5 = 60
entries due to its exact rank-1 CPD. For the TT approximation
of tensor Q, the rank-adaptive greedy-TT-cross algorithm [7]
is employed. Fig. 1 presents the relative errors of the moments
in relation to the maximum rank of QTT. The error mostly
decreases with increasing maximum TT-ranks, but there exist
cases where stagnation or slight error increases are observed.
Fig. 2 presents the computational costs of the TT cross ap-
proximation per maximum TT-rank, as well as the asymptotic
costs. Because the maximum rank appears only in a few cores,
the asymptotic complexity O

(
NIR3

)
is, in this case, a very

pessimistic upper limit.
In view of the numerical results, it can be deduced that

accurate moments are computed with the approach based on
tensor decompositions. Moreover, due to the rank-adaptive
procedure, the computational cost is minimized w.r.t. the goal
function under consideration and the desired accuracy.
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